13 research outputs found

    Using AI-Supported Supervision in a University Telemental Health Training Clinic

    Get PDF
    Artificial Intelligence (AI) technologies have the potential of transforming clinical education and supervision in university-based telemental health training clinics. AI can improve the accuracy of diagnoses, automate routine tasks, and personalize treatment plans, potentially enhancing the accessibility and quality of mental health care. In this paper, we describe why training clinics serve as an optimal setting to adopt innovation and share lessons from the field to inform future integrations of AI in clinical supervision. The lessons include support for case conceptualization, feedback on session quality, and automation of routine tasks such as sending standardized assessments and writing progress notes. However, implementing new technology requires careful consideration of ethical and practical issues such as data privacy, algorithmic bias, and transparency. AI-supported supervision can provide valuable support for clinical training, but adequate training and education are necessary for successful integration

    A framework for applying natural language processing in digital health interventions

    Get PDF
    BACKGROUND: Digital health interventions (DHIs) are poised to reduce target symptoms in a scalable, affordable, and empirically supported way. DHIs that involve coaching or clinical support often collect text data from 2 sources: (1) open correspondence between users and the trained practitioners supporting them through a messaging system and (2) text data recorded during the intervention by users, such as diary entries. Natural language processing (NLP) offers methods for analyzing text, augmenting the understanding of intervention effects, and informing therapeutic decision making. OBJECTIVE: This study aimed to present a technical framework that supports the automated analysis of both types of text data often present in DHIs. This framework generates text features and helps to build statistical models to predict target variables, including user engagement, symptom change, and therapeutic outcomes. METHODS: We first discussed various NLP techniques and demonstrated how they are implemented in the presented framework. We then applied the framework in a case study of the Healthy Body Image Program, a Web-based intervention trial for eating disorders (EDs). A total of 372 participants who screened positive for an ED received a DHI aimed at reducing ED psychopathology (including binge eating and purging behaviors) and improving body image. These users generated 37,228 intervention text snippets and exchanged 4285 user-coach messages, which were analyzed using the proposed model. RESULTS: We applied the framework to predict binge eating behavior, resulting in an area under the curve between 0.57 (when applied to new users) and 0.72 (when applied to new symptom reports of known users). In addition, initial evidence indicated that specific text features predicted the therapeutic outcome of reducing ED symptoms. CONCLUSIONS: The case study demonstrates the usefulness of a structured approach to text data analytics. NLP techniques improve the prediction of symptom changes in DHIs. We present a technical framework that can be easily applied in other clinical trials and clinical presentations and encourage other groups to apply the framework in similar contexts

    Effectiveness of a digital cognitive behavior therapy-guided self-help intervention for eating disorders in college women: A cluster randomized clinical trial

    Get PDF
    Importance: Eating disorders (EDs) are common, serious psychiatric disorders on college campuses, yet most affected individuals do not receive treatment. Digital interventions have the potential to bridge this gap. Objective: To determine whether a coached, digital, cognitive behavior therapy (CBT) intervention improves outcomes for college women with EDs compared with referral to usual care. Design, Setting, and Participants: This cluster randomized trial was conducted from 2014 to 2018 at 27 US universities. Women with binge-purge EDs (with both threshold and subthreshold presentations) were recruited from enrolled universities. The 690 participants were followed up for up to 2 years after the intervention. Data analysis was performed from February to September 2019. Interventions: Universities were randomized to the intervention, Student Bodies-Eating Disorders, a digital CBT-guided self-help program, or to referral to usual care. Main Outcomes and Measures: The main outcome was change in overall ED psychopathology. Secondary outcomes were abstinence from binge eating and compensatory behaviors, as well as ED behavior frequencies, depression, anxiety, clinical impairment, academic impairment, and realized treatment access. Results: A total of 690 women with EDs (mean [SD] age, 22.12 [4.85] years; 414 [60.0%] White; 120 [17.4%] Hispanic; 512 [74.2%] undergraduates) were included in the analyses. For ED psychopathology, there was a significantly greater reduction in the intervention group compared with the control group at the postintervention assessment (β [SE], -0.44 [0.10]; d = -0.40; t1387 = -4.23; P \u3c .001), as well as over the follow-up period (β [SE], -0.39 [0.12]; d = -0.35; t1387 = -3.30; P \u3c .001). There was not a significant difference in abstinence from any ED behaviors at the postintervention assessment (odds ratio, 1.48; 95% CI, 0.48-4.62; P = .50) or at follow-up (odds ratio, 1.51; 95% CI, 0.63-3.58; P = .36). Compared with the control group, the intervention group had significantly greater reductions in binge eating (rate ratio, 0.82; 95% CI, 0.70-0.96; P = .02), compensatory behaviors (rate ratio, 0.68; 95% CI, 0.54-0.86; P \u3c .001), depression (β [SE], -1.34 [0.53]; d = -0.22; t1387 = -2.52; P = .01), and clinical impairment (β [SE], -2.33 [0.94]; d = -0.21; t1387 = -2.49; P = .01) at the postintervention assessment, with these gains sustained through follow-up for all outcomes except binge eating. Groups did not differ in terms of academic impairment. The majority of intervention participants (318 of 385 participants [83%]) began the intervention, whereas only 28% of control participants (76 of 271 participants with follow-up data available) sought treatment for their ED (odds ratio, 12.36; 95% CI, 8.73-17.51; P \u3c .001). Conclusions and Relevance: In this cluster randomized clinical trial comparing a coached, digital CBT intervention with referral to usual care, the intervention was effective in reducing ED psychopathology, compensatory behaviors, depression, and clinical impairment through long-term follow-up, as well as realizing treatment access. No difference was found between the intervention and control groups for abstinence for all ED behaviors or academic impairment. Given its scalability, a coached, digital, CBT intervention for college women with EDs has the potential to address the wide treatment gap for these disorders. Trial Registration: ClinicalTrials.gov Identifier: NCT02076464

    Machine Learning Model to Predict Assignment of Therapy Homework in Behavioral Treatments: Algorithm Development and Validation

    No full text
    BackgroundTherapeutic homework is a core element of cognitive and behavioral interventions, and greater homework compliance predicts improved treatment outcomes. To date, research in this area has relied mostly on therapists’ and clients’ self-reports or studies carried out in academic settings, and there is little knowledge on how homework is used as a treatment intervention in routine clinical care. ObjectiveThis study tested whether a machine learning (ML) model using natural language processing could identify homework assignments in behavioral health sessions. By leveraging this technology, we sought to develop a more objective and accurate method for detecting the presence of homework in therapy sessions. MethodsWe analyzed 34,497 audio-recorded treatment sessions provided in 8 behavioral health care programs via an artificial intelligence (AI) platform designed for therapy provided by Eleos Health. Therapist and client utterances were captured and analyzed via the AI platform. Experts reviewed the homework assigned in 100 sessions to create classifications. Next, we sampled 4000 sessions and labeled therapist-client microdialogues that suggested homework to train an unsupervised sentence embedding model. This model was trained on 2.83 million therapist-client microdialogues. ResultsAn analysis of 100 random sessions found that homework was assigned in 61% (n=61) of sessions, and in 34% (n=21) of these cases, more than one homework assignment was provided. Homework addressed practicing skills (n=34, 37%), taking action (n=26, 28.5%), journaling (n=17, 19%), and learning new skills (n=14, 15%). Our classifier reached a 72% F1-score, outperforming state-of-the-art ML models. The therapists reviewing the microdialogues agreed in 90% (n=90) of cases on whether or not homework was assigned. ConclusionsThe findings of this study demonstrate the potential of ML and natural language processing to improve the detection of therapeutic homework assignments in behavioral health sessions. Our findings highlight the importance of accurately capturing homework in real-world settings and the potential for AI to support therapists in providing evidence-based care and increasing fidelity with science-backed interventions. By identifying areas where AI can facilitate homework assignments and tracking, such as reminding therapists to prescribe homework and reducing the charting associated with homework, we can ultimately improve the overall quality of behavioral health care. Additionally, our approach can be extended to investigate the impact of homework assignments on therapeutic outcomes, providing insights into the effectiveness of specific types of homework

    Using Digital Technology to Reduce the Prevalence of Mental Health Disorders in Populations: Time for a New Approach

    Get PDF
    Digital technology, which includes the collection, analysis, and use of data from a variety of digital devices, has the potential to reduce the prevalence of disorders and improve mental health in populations. Among the many advantages of digital technology is that it allows preventive and clinical interventions, both of which are needed to reduce the prevalence of mental health disorders, to be feasibly integrated into health care and community delivery systems and delivered at scale. However, the use of digital technology also presents several challenges, including how systems can manage and implement interventions in a rapidly changing digital environment and handle critical issues that affect population-wide outcomes, including reaching the targeted population, obtaining meaningful levels of uptake and use of interventions, and achieving significant outcomes. We describe a possible solution, which is to have an outcome optimization team that focuses on the dynamic use of data to adapt interventions for populations, while at the same time, addressing the complex relationships among reach, uptake, use, and outcome. We use the example of eating disorders in young people to illustrate how this solution could be implemented at scale. We also discuss system, practitioner-related, and other issues related to the adaptation of such an approach Digital technology has great potential for facilitating the reduction of mental illness rates in populations. However, achieving this goal will require the implementation of new approaches. As a solution, we argue for the need to create outcome optimization teams, tasked with integrating data from various sources and using advanced data analytics and new designs to develop interventions/strategies to increase reach, uptake, use/engagement, and outcomes for both preventive and treatment interventions.Funding Agencies|National Institutes of HealthUnited States Department of Health &amp; Human ServicesNational Institutes of Health (NIH) - USA [R01 MH100455, T32 HL007456, T32 HL130357, K08 MH120341, K01 DK116925]; Australias National Health and Medical Research CouncilNational Health and Medical Research Council of Australia [APP1057411]; Centre of Research Excellence from Australias National Health and Medical Research Council [APP1170937]</p
    corecore